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Abstract. This paper develops the M̈obius inversion formula for the Gaussian integers and
Eisenstein’s integers, and gives two applications. The first application is to the two-dimensional
arithmetic Fourier transform (AFT), which is suitable for parallel processing. The second
application is to two-dimensional inverse lattice problems, and is illustrated with the recovery of
interatomic potentials from the cohesive energy for monolayer graphite. The paper demonstrates
the potential application in the physical science of integral domains other than the standard
integers.

1. Introduction

Recently, a number of authors have applied the one-dimensional Möbius inversion formula
[1] to a variety of inverse problems, leading to concise analytic expressions, and to rapidly
convergent series for practical calculation. The applications have included the inverse
blackbody radiation problem, recovery of the temperature distribution of the shell of a
black hole and interstellar dust, the inverse heat capacity problem for phonon density of
states, the inverse carrier density problem for electron density of states, the inverse cohesion
problem, and so on [2–7]. Each of these applications can be regarded as examples of the
Möbius inversion formula, with equal and unequal weights [2, 6–8].

The present work extends the Möbius function and the M̈obius inversion formula to
integral domains other than the standard integers. Applications are given to the two-
dimensional (2D) arithmetic Fourier transform (AFT), and theab initio calculation of the
C–C pair interaction in monolayer graphite. All the contents are introduced in an elementary
way for the physicist’s convenience. It shows the potential applications of the theory of
integral domains to physical sciences.

2. Inverse cohesion problem for a 2D lattice

Suppose that the vertices of an infinite two-dimensional square lattice are all occupied with
interacting atoms, so that any one of them experiences a potential as

E(x) = 1
2

∑
(m,n)6=(0,0)

8
(√

m2 + n2x
)

= 2
∞∑

m=0

∞∑
n=1

8
(√

m2 + n2x
)

. (1)
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The inverse cohesion problem for a two-dimensional lattice is to determine8(x) from E(x)

based on the above relation. For solving the equation, Chen and Ren proposed an iterative
method based on the classical one-dimensional Möbius inversion formula with the concept
of most close-packed direction instead of the nearest neighbour distance [8], which has
been directly applied to various kinds of 3D crystal lattice structures. Ninhamet al inverted
double series such as (1) by writing [6]

8(x) =
∞∑

k=1

ω(k)E(
√

kx) (2)

where the coefficientsω(k) can be found recursively, and this recursive calculation can
be simplified as the Dirichlet inverse from number theory. Their use of number theory is
not applicable to three-dimensional crystal structure problems, for which we need to use a
specially generalized Dirichlet product [9].

Originally the Möbius functionµ(n) was introduced to describe the unique factorization
of any natural number [1, 10], i.e.

n = p
r1(n)

1 p
r2(n)

2 · · ·prk(n)
k (3)

with pi 6= pj , when i 6= j , wherepi is a prime number, andri > 1. For any algebraic
structure which possesses analogous factorization properties, an analogue of the Möbius
function and M̈obius inversion formula may be anticipated. The most general algebraic
structure of this type is aring, but in practice a few additional restrictions seem necessary,
and these direct us to those structures known asintegral domains. We consider one such
example in the present section. A second example will be found in section 4.

The Gaussian integersare defined to be the setG = {z = m + ni\m, n ∈ Z} with
the standard definition of addition and multiplication of complex numbers used to define
addition and multiplication of Gaussian integers. The roles of zero and unity are played by
0+ 0i and 1+ i, abbreviated as 0 and 1 as usual. Divisors of a Gaussian integer are defined
in the obvious manner, and any divisor of unity is called aunit. There are clearly four of
these: 1,−1, i, −i. The set of units is denoted byU . If u ∈ U , then one says thatuz is
associatedwith the Gaussian integerz. One calls a Gaussian integerprime if it is neither
zero nor a unit. It can be proved that any Gaussian integer can be factored into a product
of primes, in a manner such as

z = εP
k1
1 P

k2
2 · · ·P ki

i · · ·P kt

t (4)

similar to (3) which is unique apart from the order of the factors, the presence of units,
and the ambiguity between primes associated with each other. For the purpose of physical
applications, elements of the setG simply correspond to all 2D lattice points, and the setG∗

of non-zero Gaussian integers becomes a multiplicative semigroup. The Möbius function
of a non-zero Gaussian integerz can now be defined as

µ(z) =


1 if z ∈ U ,

(−1)t if z factors as the product oft distinct primes,

with no two factors being associated,

0 otherwise.

(5)

Obviously, the M̈obius function takes the same value for any two associated Gaussian
integers, and a sum rule ofµ(z) is given as∑

d|z
µ(d) =

{
0 if z 6∈ U ,

4 if z ∈ U .
(6)
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This is similar to the sum rule∑
d|n

µ(d) = δn1 (7)

for the Möbius functionµ(n) on the natural numbersN . To see whether the Gaussian
integerm + in has a prime, it is equivalent to whetherm + in has non-trivial factors. The
first case is that neitherm nor n is zero, form+ in being factorized,m2 +n2 must factorize
as an ordinary natural number. The second case is that one ofm andn is zero, thenm+ in
is prime inG∗ if and only if m2 + n2 is prime inN . These results can be expressed as{

m2 + n2 is prime inN if mn 6= 0,

|z| 6= p2 + q2 is a prime inN if mn = 0.
(8)

Using these observations, which can be proved rigorously, the function Möbius function for
the setG∗ of non-zero Gaussian integers is easily evaluated (table 1).

Table 1. Gaussian M̈obius functions.

m n → 0 1 2 3 4 5 6 7 8

1 1 −1 −1 1 −1 1 −1 0 1
2 0 −1 0 −1 0 −1 0 −1 0
3 −1 1 −1 1 0 1 1 1 −1
4 0 −1 0 0 0 −1 0 1 0
5 1 1 −1 1 −1 −1 −1 1 −1
6 0 −1 0 1 0 −1 0 1 0
7 −1 0 −1 1 1 1 1 1 −1
8 0 1 0 −1 0 −1 0 −1 0

Note that the M̈obius function or the inversion coefficient only takes the value of 1,−1
and 0 as usual; it is an obvious advantage over the Ninham’s result.

For solving equation (1)

E(x) = 1
2

∑
(m,n)6=(0,0)

8
(√

m2 + n2x
)

we can apply the M̈obius inversion formula on the algebraic ring of integers, which leads
to

8(x) = 1
8

∑
(m,n)6=(0,0)

µ(m + ni)E
(√

m2 + n2x
)

= 1
2

∞∑
m=1

∞∑
n=0

µ(m + ni)E
(√

m2 + n2x
)

. (9)

In fact,
1
8

∑
(m,n)6=(0,0)

µ(m + ni)E
(√

m2 + n2x
)

= 1
8

∑
(m,n)6=(0,0)

µ(m + ni)

[
1
2

∑
(p,q)6=(0,0)

8
(√

(m2 + n2)(p2 + q2)x
) ]

= 1
16

∑
z1

µ(z1)
∑
z2

8(|z1z2|x) = 1
16

∑
z

[ ∑
z1|z

µ(z1)

]
8(|z|x)

= 1
4

∑
z∈U

8(|z|x) = 8(x).
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This solution (9) from the proper M̈obius method is significantly simpler than all the previous
formulae for analysis and easier for calculation. This method is also suitable for binary
systems.

3. Application to the 2D arithmetic Fourier transform

The discrete Fourier transform (DFT) is an essential part of numerous physical and technical
problems such as band structure, signal processing, pattern recovery, etc. The popularity
of the fast Fourier transform (FFT) [11] is primarily due to its reduction of the number
of multiplicative operations from O(N2) to O(N logN) for computing 2N + 1 Fourier
coefficients. The arithmetic Fourier transform (AFT) [12] is based on the Möbius inversion
formula of classical number theory [1], in which the number of multiplications is further
reduced significantly down to O(N) since the M̈obius functions only take the value in
{−1, 0, 1}. At the same time, the remaining addition operations can be performed much
more quickly by a parallel processor.

A 2D AFT algorithm has been proposed by Tuftset al [13]. Also, a row-column
algorithm has been developed by Kelly and co-workers [14]. All of those methods require
that the row, column, and the global means of the function must be removed before
transforming. In the present work, a new 2D AFT technique based on the Möbius inversion
formula on the ring of Gaussian integers [1, 10] is introduced in a concise manner.

Suppose that a functionf (x, y) is defined on R2 with a period of 2π for both thex

andy, and with the zero ‘direct component’, that is,

f (x, y) =
∞∑

m,n=−∞
cm,nei(mx+ny) (10)

with ∫
D

f (x, y) dx dy ≡
∫ 2π

0

∫ 2π

0
f (x, y) dx dy = 0 (11)

whereD = [0, 2π ] × [0, 2π ], and

cm,n = 1

4π2

∫
D

f (x, y)e−i(mx+ny) dx dy. (12)

Now let us use the notationα = m+ni, and writecm,n = cα. The sum in (10) is equivalent
to a sum overα, with α taking all values in the setG∗ of non-zero Gaussian integers. As
discussed in section 2, for the Gaussian integers we have a unique factorization property
and a M̈obius inversion formula, which will be used below.

Writing β = a + bi ∈ G∗, we have

Sα ≡
∑
β∈G∗

cαβ = 1

4π2

∫
D

[ ∑
β∈G∗

e−i[(am−bn)x+(bm+an)y]

]
f (x, y) dx dy

= 1

4π2

∫
D

[ ∑
β∈G∗

e−ia(mx+ny)e−ib(−nx+my)

]
f (x, y) dx dy. (13)

Noting that

∞∑
n=−∞

einx = 2π

∞∑
q=−∞

δ(x − 2qπ) (14)
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and consideringβ = a + bi, it is given that

Sα = 1

4π2

∫
D

[
− 1 + 4π2

∞∑
p,q=−∞

δ(mx + ny − 2pπ)δ(−nx + my − 2qπ)

]
f (x, y) dx dy

=
∞∑

p,q=−∞

∫
D

δ(mx + ny − 2pπ)δ(−nx + my − 2qπ)f (x, y) dx dy.

Since D is a bounded region, when|p|, |q| are large enough, the corresponding terms
vanish, thus only finitely many terms make a contribution to the above summation.

We introduce the transformation of variables

u = mx + ny

v = −nx + my.

Notice that the Jacobian can be expressed as

1 ≡
∣∣∣∣ m n

−n m

∣∣∣∣ = m2 + n2 = |α|2 6= 0

and

x = (mu − nv)/1

y = (nu + mv)/1.

Therefore, equation (13) can be expressed as

Sα = 1

1

∞∑
p,q=−∞

∫
D′

δ(u − 2pπ)δ(v − 2qπ)f

(
mu − nv

1
,
nu + mv

1

)
du dv

= 1

1

∑
(u,v)∈D′(α)

f

(
mu − nv

1
,
nu + mv

1

)
= 1

1

∑
(x,y)∈D(α)

f (x, y)

= 1

|α|2
∑

(x,y)∈D(α)

f (x, y) (15)

whereD(α) is determined uniquely byα = m+ in. In other words, for certain(m, n), only
a finite number of points{2π(mp − nq)/(m2 + n2), 2π(np + mq)/(m2 + n2)} would be
inside the field [0, 2π ] × [0, 2π ], and p, q are integers. This finite point set is also called
the interpolation point set.

For the equation

Sα =
∑
β∈G∗

cαβ (16)

we have the corresponding M̈obius inversion formula as∑
z∈U

czα = 1
4

∑
β∈G∗

µ(β)Sαβ (17)

since the right-hand side of (17) is equal to
1
4

∑
β∈G∗

µ(β)Sαβ = 1
4

∑
β∈G∗

µ(β)
∑

γ

cαβγ

β ′=βγ= 1
4

∑
β ′∈G∗

cαβ ′
∑
β|β ′

µ(β) = 4[ 1
4]

∑
β ′∈U

cβ ′α

= cα + ciα + c−α + c−iα.
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Thus

W1 ≡ cα + ciα + c−α + c−iα = 1
4

∑
β∈G∗

µ(β)

|αβ|2
∑

(x,y)∈D(αβ)

f (x, y). (18)

Now, let us consider

F(x, y) ≡ f (x + sπ, y + tπ) =
∞∑

m,n=−∞
cm,nei[m(x+sπ)+n(y+tπ)]

=
∞∑

m,n=−∞
cm,nei(ms+nt)πei(mx+ny).

From the periodicity off (x, y) andc0,0 = 0, it is also given that∫ 2π

0

∫ 2π

0
F(x, y) dx dy = 0.

Again writing thatα = m + ni, from equation (18) we have

cαei(ms+nt)π + cαie
i(−ns+mt)π + c−αei(−ms−nt)π + c−αie

i(ns−mt)π

= 1
4

∑
β∈G∗

µ(β)

|αβ|2
∑

(x,y)∈D(αβ)

f (x + sπ, y + tπ). (19)

(i) Let s = n
1

, t = −m
1

. Then

W2 ≡ cαei0π + cαie
−iπ + c−αei0π + c−αie

iπ

= cα − cαi + c−α − c−αi

= 1

4

∑
β∈G∗

µ(β)

|αβ|2
∑

(x,y)∈D(αβ)

f

(
x + n

m2 + n2
π, y + −m

m2 + n2
π

)
. (20)

(ii) Let s = m+n
21

, t = −m+n
21

. Then

W3 ≡ i[cα − cαi − c−α + c−αi ]

= 1

4

∑
β∈G∗

µ(β)

|αβ|2
∑

(x,y)∈D(αβ)

f

(
x + m + n

2(m2 + n2)
π, y + −m + n

2(m2 + n2)
π

)
. (21)

(iii) Let s = m−n
21

, t = m+n
21

. Then

W4 ≡ i[cα + cαi − c−α − c−αi ]

= 1

4

∑
β∈G∗

µ(β)

|αβ|2
∑

(x,y)∈D(αβ)

f

(
x + m − n

2(m2 + n2)
π, y + m + n

2(m2 + n2)
π

)
. (22)

From the above, we have

cαi − c−αi = i

2
(W2 − W3). (23)

Finally, it is given that

cα = 1
4[(W1 + W2) − i(W3 + W4)] (24)

c−α = 1
4[(W1 + W2) + i(W3 + W4)] (25)

cαi = 1
4[(W1 − W2) + i(W3 − W4)] (26)

c−αi = 1
4[(W1 − W2) − i(W3 − W4)]. (27)

In many cases,f (x, y) is real, and all theW1, W2, W3 andW4 are real, hencēcα = c−α.
From the above, we see that the multiplicative operations in this AFT are much less than
that in FFT, which is quite suitable for a parallel processing design. However, the sampling
distribution needs further improvement for practical application.
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Figure 1. A 2D hexagonal lattice. HereR is the point about which rotation occurs.

4. 2D hexagonal lattice problem and ring of Eisenstein’s integers

4.1. Möbius inverse formula on Eisenstein’s ring

The 2D hexagonal lattice such as a monolayer graphite is essentially a complex lattice as
shown in figure 1. Rotate it through 180◦ around a reference pointR, then superimpose the
new pattern on the original one. Obviously, the final result is equivalent to a superposition of
two face-centred hexagonal lattices with lattice constantsx and

√
3x respectively (figure 2),

and each of them can be represented as a ring of Eisenstein’s integers [1, 10], i.e.

E = {a + bω | a, b ∈ Z} (28)

wherea, b are integers, and

ω = 1 + √
3i

2
= eiπ/3. (29)

Since ω2 = ω − 1, the product of two Eisenstein’s integers is itself an Eisenstein’s
integer. The idea of factorization, of units, and of association of elements go through as for
the Gaussian integers, except that the units are

U = {±1, ±ω, ±ω2} (30)

which represents all the roots ofz6 = 1. Any non-zero Eisenstein’s integer is therefore
associated with five other distinct Eisenstein’s integers.

This also includes a multiplicative semigroup with unique factorization considering the
associative relations.
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Figure 2. Put the two pictures before and after rotation together. The final result is a
superposition of two face-centred hexagons.

Therefore, the cohesive energy of the hexagonal lattice is equal to

E(x) = 1
2

∑
α∈E∗

1
2[8(|α|x) + 8(

√
3|α|x)] (31)

where α = a + bω represents an Eisenstein’s integer, andE∗ is the set of non-zero
Eisenstein’s integers. Based on the Möbius theorem on the Eisenstein’s ring, the solution
of (31) can be given immediately as

[8(x) + 8(
√

3x)] = 4

62

∑
α∈E∗

µ(α)E(|α|x).

Therefore, as the previous section, it leads to

8(x) = 1
9

∞∑
n=0

(−1)n
∑
α∈E∗

µ(α)E(|α|3n
2 x). (32)

This result is quite concise and easy for practical calculation. The Möbius function on
the ring of Eisenstein’s integers is shown in table 2. Note that the rotation of the lattice
is equivalent to constructing a principal ideal in the theory of rings, which is similar to a
normalized subgroup in the group theory.

The pair potentials between distinct atoms can be obtained by solving the inverse
problems for a binary structure.
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Table 2. Eisenstein’s M̈obius functions.

m n → 0 1 2 3 4 5 6 7 8

1 1 −1 −1 −1 1 −1 −1 1 −1
2 −1 −1 1 −1 1 1 1 −1 −1
3 0 −1 −1 0 −1 0 0 −1 −1
4 0 1 1 −1 0 −1 1 1 0
5 −1 −1 1 0 −1 −1 1 −1 1
6 0 −1 1 0 1 1 0 −1 1
7 1 1 −1 −1 1 −1 −1 −1 0
8 0 −1 −1 −1 0 1 1 0 0

4.2. Application to graphite monolayer

It is well known that graphite has a layer structure with very strong interactions in planes and
very weak interactions between planes. Now let us calculate the in-plane elastic constants
of monolayer graphite by using the M̈obius inverse formula on the Eisenstein ring.

4.2.1. Calculation of pair potential The ab initio calculated total energy for a monolayer
graphite sheet using the FLAPW method has been completed [15]. Here, the Rose function
is taken to fit the total energy curve as

E(x) = −a(1 + α(x − x0))e
−α(x−x0) (33)

where x is the lattice constant andx0 is the lattice constant at equilibrium state. The
parameters in (33) are listed in table 3.

Table 3. Parameters for fitting total energy of graphite monolayer.

a (eV/atom) α(A−1) x0 (A)

1 ab initio limited basis [15] 7.41 3.038 1.429
2 ab initio converged basis [15] 8.69 2.842 1.415
3 Experiment 7.39 [16] 3.029 [17] 1.421 [16]

The calculated C–C pair potential can be obtained using (32). If it is also fit in Rose
form as

φ(r) = −a(1 + α(r − r0))e
−α(r−r0) (34)

then the fitting parameters are as shown in table 4.

Table 4. The calculated C–C pair potential based on the Rose equation.

a (eV) α(A−1) r0 (A)

1 3.456 3.095 1.594
2 3.795 2.900 1.622
3 3.422 3.083 1.589

Note that table 4 corresponds to table 3 associated with three sources of total energy
curves respectively.



5600 C Nanxian et al

4.2.2. Calculated results of elastic constants.For convenience, we define

eij = c

2
Cij (35)

wherec is lattice constant of bulk hcp crystal inc-axes direction,eij andCij are theij th
elastic constants and theij -component of elastic modulus tensor respectively. Theneij can
be expressed as

eij = 1

s0

∂2E
∂εi∂εj

∣∣∣∣
εi=0,εj =0

(36)

wheres0 is the equilibrium atom area in plane,

s0 = 3
√

3

4
x2

0 (37)

andE is the deformation energy per atom in the monolayer.
The strains are given by the following transformations:

x ′ = x(1 + ε) y ′ = y for e11

x ′ = x(1 + ε1) y ′ = y(1 + ε2) for e12

and

x ′ = x√
1 + ε2

y ′ = y + xε√
1 + ε2

for e66.

According to a similar method to that discussed before, the deformation energyE(εi, εj ) can
be expressed as the sums of pair potential and then the elastic constants can be expressed
as

e11 = 1

24
√

3x0

∑
α∈E

{|α|φ′(|α|x0) +
√

3|α|φ′(
√

3|α|x0)}

+ 1

8
√

3

∑
α∈E

{|α|2φ′′(|α|x0) + 3|α|2φ′′(
√

3|α|x0)} (38)

and

e12 = e66 = − 1

24
√

3x0

∑
α∈E

{|α|φ′(|α|x0) +
√

3|α|φ′(
√

3|α|x0)}

+ 1

24
√

3

∑
α∈E

{|α|2φ′′(|α|x0) + 3|α|2φ′′(
√

3|α|x0)} (39)

whereφ′ andφ′′ are the first and the second derivative ofφ respectively. Thus, we have

e11 = 1

6
√

3
E ′(x0) + 1

2
√

3
E ′′(x0) (40)

and

e12 = e66 = − 1

6
√

3
E ′(x0) + 1

6
√

3
E ′′(x0). (41)

The equilibrium condition of a lattice is

E′(x0) = 0

therefore

e11 = 3e12 = 3e66 = 1

2
√

3
E ′′(x0). (42)
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Table 5. The comparison of calculated and experimental elastic constants with unit ofN/m.

e11 e12 e66

1 315.9 105.3 105.3
Calculated 2 324.2 108.1 108.1

3 313.2 104.5 104.5

Experiment [17] 378.6 94.5 —
Experiment [18] 355.1 60.3 147.4

The experimental values ofeij are calculated from the relationeij = c
2Cij , in whichc = 6.7A

[16]. The calculated results are listed in table 5.
The calculated results are quite acceptable although many-body interactions have been

ignored [18].

5. Conclusion and discussion

From the above discussion, the inverse 2D lattice problem can be solved successfully based
on different kinds of M̈obius inversion theorems in the theory of rings. The solutions
presented in this work are not only concise for theoretical analysis, but also rapidly
convergent for practical calculations in physics. This provides a convenient bridge between
the electronic structure calculation and mechanical, thermal or chemical properties. Also, we
would like to mention some other interesting works on the applications of Möbius inversion
formulae to physical problems, such as the Möbius method based on partially ordered sets
for the cluster variation method in statistical physics [19], and the Möbius inversion formula
for supersymmetry in quantum field theory [20].
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Appendix. Some notes on AFT

This appendix illustrates an improved practical implementation of the one-dimensional AFT,
which can also be generalized to the two-dimensional AFT. Suppose that a functionf (x)

is defined on(−∞, ∞) with period 2π and zero direct component, that is

f (x) =
∞∑

n=−∞
cneinx (A1)

where

cn = 1

2π

∫ 2π

0
e−inxf (x) dx with c0 = 0. (A2)
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Then we define

Sn =
∞∑

k=1

(cnk + c−nk) = 1

n

n∑
m=1

f

(
2mπ

n

)
. (A3)

Therefore,

cn + c−n =
∞∑

k=1

µ(k)Snk =
∞∑

k=1

µ(k)

nk

nk∑
m=1

f

(
2mπ

nk

)
. (A4)

Similarly, from

f (x + y) =
∞∑

n=−∞
cneinxeiny (A5)

we have

Sn(y) =
∞∑

k=1

(cnkeinky + c−nke−inky) = 1

n

n∑
m=1

f

(
2mπ

n
+ y

)
(A6)

and

cneiny + c−ne−iny =
∞∑

k=1

µ(k)Snk(y) =
∞∑

k=1

µ(k)

nk

nk∑
m=1

f

(
2mπ

nk
+ y

)
. (A7)

Let {
cnkeinky1 + c−nke−inky1 = W1

cnkeinky2 + c−nke−inky2 = W2

(A8)

then

cn =

∣∣∣∣ W1 e−iny1

W2 e−iny2

∣∣∣∣
1

= W1e−iny2 − W2e−iny1

1
(A9)

and

c−n =

∣∣∣∣ einy1 W1

einy2 W2

∣∣∣∣
1

= W2einy1 − W1einy2

1
(A10)

where

1 =
∣∣∣∣ einy1 e−iny1

einy2 e−iny2

∣∣∣∣ = ein(y1−y2) − e−in(y1−y2). (A11)

We can selecty1, y2 such thaty1 − y2 6= k
n
π and 1 6= 0. If f (x) is real, and

f (x) = ∑∞
n=1[an cosnx + bn sinnx], then

an = cn + c−n and bn = i(cn − c−n). (A12)

Therefore

an =

∣∣∣∣ W1 e−iny1

W2 e−iny2

∣∣∣∣ −
∣∣∣∣ W1 einy1

W2 einy2

∣∣∣∣
1

=

∣∣∣∣ W1 e−iny1 − einy1

W2 e−iny2 − einy2

∣∣∣∣
1
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=

∣∣∣∣ W1 − sinny1

W2 − sinny2

∣∣∣∣
sinn(y1 − y2)

= W2 sinny1 − W1 sinny2

sinn(y1 − y2)
(A13)

bn = i

∣∣∣∣ W1 e−iny1

W2 e−iny2

∣∣∣∣ +
∣∣∣∣ W1 einy1

W2 einy2

∣∣∣∣
1

=

∣∣∣∣ W1 cosny1

W2 cosny2

∣∣∣∣
sinn(y1 − y2)

= W1 cosny2 − W2 cosny1

sinn(y1 − y2)
. (A14)

If only finitely many termsN are taken, or 16 n 6 N , then we may havey1 = 0, and
y2 = π/(N + 1). In this case, we have

an = W1 =
∞∑

k=1

µ(k)Snk(0) =
∞∑

k=1

µ(k)

nk

nk∑
m=1

f

(
2mπ

nk

)
(A15)

and

bn = W2 − W1 cos
(

nπ
N+1

)
sin

(
nπ

N+1

) (A16)

where

W2 =
∞∑

k=1

µ(k)

nk

∞∑
m=0

f

(
2mπ

nk
+ π

N + 1

)
=

∞∑
k=1

µ(k)Snk

(
π

N + 1

)
. (A17)

In this way, the sampling distribution becomes more convenient for calculation than the
existing works, but there still exist practical problems for further study.
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