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Abstract. This paper develops the dius inversion formula for the Gaussian integers and
Eisenstein’s integers, and gives two applications. The first application is to the two-dimensional
arithmetic Fourier transform (AFT), which is suitable for parallel processing. The second
application is to two-dimensional inverse lattice problems, and is illustrated with the recovery of
interatomic potentials from the cohesive energy for monolayer graphite. The paper demonstrates
the potential application in the physical science of integral domains other than the standard
integers.

1. Introduction

Recently, a number of authors have applied the one-dimensioabiud inversion formula

[1] to a variety of inverse problems, leading to concise analytic expressions, and to rapidly
convergent series for practical calculation. The applications have included the inverse
blackbody radiation problem, recovery of the temperature distribution of the shell of a
black hole and interstellar dust, the inverse heat capacity problem for phonon density of
states, the inverse carrier density problem for electron density of states, the inverse cohesion
problem, and so on [2-7]. Each of these applications can be regarded as examples of the
Mobius inversion formula, with equal and unequal weights [2, 6-8].

The present work extends thedMius function and the ®bius inversion formula to
integral domains other than the standard integers. Applications are given to the two-
dimensional (2D) arithmetic Fourier transform (AFT), and #ieinitio calculation of the
C—C pair interaction in monolayer graphite. All the contents are introduced in an elementary
way for the physicist’'s convenience. It shows the potential applications of the theory of
integral domains to physical sciences.

2. Inverse cohesion problem for a 2D lattice

Suppose that the vertices of an infinite two-dimensional square lattice are all occupied with
interacting atoms, so that any one of them experiences a potential as

E(x):% Z <I>(\/m2+n2x>=2ii®(vm2+n2x>. 1)

(m,n)#(0,0) m=0n=1
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The inverse cohesion problem for a two-dimensional lattice is to deterdning from E(x)

based on the above relation. For solving the equation, Chen and Ren proposed an iterative
method based on the classical one-dimensiondbiMs inversion formula with the concept

of most close-packed direction instead of the nearest neighbour distance [8], which has
been directly applied to various kinds of 3D crystal lattice structures. Nirgtaahinverted

double series such as (1) by writing [6]

O(x) = Y wk)EWkx) 2)
k=1

where the coefficient® (k) can be found recursively, and this recursive calculation can
be simplified as the Dirichlet inverse from number theory. Their use of number theory is
not applicable to three-dimensional crystal structure problems, for which we need to use a
specially generalized Dirichlet product [9].

Originally the Mbbius functionu (r) was introduced to describe the unique factorization
of any natural number [1, 10], i.e.

n= p£1(n)p£2(n) . pltk(ﬂ) €)

with p; # p;, wheni # j, wherep; is a prime number, ang, > 1. For any algebraic
structure which possesses analogous factorization properties, an analogue dfttius M
function and Mbbius inversion formula may be anticipated. The most general algebraic
structure of this type is @ng, but in practice a few additional restrictions seem necessary,
and these direct us to those structures knowintegral domains We consider one such
example in the present section. A second example will be found in section 4.

The Gaussian integersre defined to be the sé& = {z = m + ni\m,n € Z} with
the standard definition of addition and multiplication of complex numbers used to define
addition and multiplication of Gaussian integers. The roles of zero and unity are played by
0+ 0i and 1+ i, abbreviated as 0 and 1 as usual. Divisors of a Gaussian integer are defined
in the obvious manner, and any divisor of unity is calledrit. There are clearly four of
these: 1,—1, i, —i. The set of units is denoted by. If u € U, then one says thatz is
associatedwith the Gaussian integer. One calls a Gaussian integarime if it is neither
zero nor a unit. It can be proved that any Gaussian integer can be factored into a product
of primes, in a manner such as

z=ePfPy? ... P pf 4)

L

similar to (3) which is unique apart from the order of the factors, the presence of units,
and the ambiguity between primes associated with each other. For the purpose of physical
applications, elements of the g@tsimply correspond to all 2D lattice points, and the Gét

of non-zero Gaussian integers becomes a multiplicative semigroup. Bhéusifunction

of a non-zero Gaussian integercan now be defined as

1 if zeU,
(=1 if z factors as the product efdistinct primes,

) = with no two factors being associated, ®)
0 otherwise.

Obviously, the Mbius function takes the same value for any two associated Gaussian
integers, and a sum rule of(z) is given as

o ifzgu,
TS P ®

d|z
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This is similar to the sum rule
> ud) =6 @
d|n
for the Mobius functionu(nz) on the natural number®&'. To see whether the Gaussian
integerm + in has a prime, it is equivalent to whether+ in has non-trivial factors. The
first case is that neither norn is zero, form +in being factorized? +n? must factorize
as an ordinary natural number. The second case is that aneaofin is zero, themn + in
is prime inG* if and only if m? 4+ n? is prime in N. These results can be expressed as
m? + n? is prime in N if mn 0, @®
lz| # p%+ 4% is a prime inN if mn = 0.
Using these observations, which can be proved rigorously, the functidyuel function for
the setG* of non-zero Gaussian integers is easily evaluated (table 1).

Table 1. Gaussian Mbius functions.

m n— 0 1 2 3 4 5 6 7 8
1 1-1-1 1-1 1-1 0 1
2 0-1 0-1 0-1 0-1 O
3 -1 1-1 1 0 1 1 1-1
4 0-1 0 0 0-1 0 1 O
5 1 1-1 1-1-1-1 1-1
6 0-1 0 1 0-1 0 1 O
7 -1 0-1 1 1 1 1 1-1
8 0 1 012 0-1 0-1 O

Note that the Mbius function or the inversion coefficient only takes the value 6f1,
and 0 as usual; it is an obvious advantage over the Ninham'’s result.
For solving equation (1)
E(x) = % Z P (\/mz—i-nzx)
(m,n)#(0,0)
we can apply the NMbius inversion formula on the algebraic ring of integers, which leads

to
d(x) = % Z u(m +ni)E (\/mz—-l—nzx)
(m,n)#(0,0)
= %Zzu(m—i—ni)E (\/mz—i-nzx). 9)
m=1n=0
In fact,
: Z w(m +ni)E (\/ m? + nzx)
(m,n)#(0,0)

DY u<m+ni)[; ) <b(¢(m2+n2>(p2+q2)x)]

(m,n)7(0,0) (p.9)#(0,0)

= A3 ) Y @z = £ [Z“(Zl)}q’('z'x)

z1lz

1D 2(lzlx) = O(x).

zelU
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This solution (9) from the proper tbius method is significantly simpler than all the previous
formulae for analysis and easier for calculation. This method is also suitable for binary
systems.

3. Application to the 2D arithmetic Fourier transform

The discrete Fourier transform (DFT) is an essential part of numerous physical and technical
problems such as band structure, signal processing, pattern recovery, etc. The popularity
of the fast Fourier transform (FFT) [11] is primarily due to its reduction of the number
of multiplicative operations from V?) to O(N logN) for computing 2V + 1 Fourier
coefficients. The arithmetic Fourier transform (AFT) [12] is based on tieils inversion
formula of classical number theory [1], in which the number of multiplications is further
reduced significantly down to @/) since the Mbius functions only take the value in
{—1,0,1}. At the same time, the remaining addition operations can be performed much
more quickly by a parallel processor.

A 2D AFT algorithm has been proposed by Tufis al [13]. Also, a row-column
algorithm has been developed by Kelly and co-workers [14]. All of those methods require
that the row, column, and the global means of the function must be removed before
transforming. In the present work, a new 2D AFT technique based on tieuslinversion
formula on the ring of Gaussian integers [1, 10] is introduced in a concise manner.

Suppose that a functiorfi(x, y) is defined on R with a period of 2 for both thex
andy, and with the zero ‘direct component’, that is,

fE= 3 e (10)
with
2 2
/Dﬂx,y)dxdyzfo /0 Fr,yydrdy =0 (11)

whereD = [0, 2] x [0, 2r], and

1 X
Cn = / Fx, y)e e dy dy. (12)
’ 47T2 D

Now let us use the notatiam = m + ni, and writec,, , = ¢,. The sum in (10) is equivalent
to a sum ovewr, with « taking all values in the sef* of non-zero Gaussian integers. As
discussed in section 2, for the Gaussian integers we have a unique factorization property
and a Mdbius inversion formula, which will be used below.

Writing 8 = a + bi € G*, we have

1 —i[(am—bn m-+an)y
Sy = Z Cap = @/D [ Z g lHam=bmx+(bm- )-‘]i|f(x,y)dxdy

BeG* BeG*
1 / [ —ia(mx—+ny) n—ib(—nx+ fi|
= g latmxmgribCnxtm | g y) d dy. (13)
47'[2 D ﬂ;"
Noting that
o0 X o0
Z e =2n Z 8(x — 2qm) (14)

n=—00 g=—00
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and consideringg = a + bi, it is given that

1 o0
Sﬂtzi/\ — 1+ 47?2 Z S(mx +ny — 2pm)8(—nx +my — 2qm) | f(x, y) dx dy
47'[2 D Pg——00

= Z /S(mx—l—ny—2pn)8(—nx+my—2qn)f(x,y)dxdy.
D

p.q=—00

Since D is a bounded region, whelp|, |¢| are large enough, the corresponding terms
vanish, thus only finitely many terms make a contribution to the above summation.
We introduce the transformation of variables

U =mx +ny
v = —nx +my.
Notice that the Jacobian can be expressed as

m n
—n

A= =m2+n2=|0{|2;é0

and
x = (mu —nv)/A
y = (nu +mv)/A.
Therefore, equation (13) can be expressed as

Su =% Z /la(u—an)S(v—qur)f (mu—nv, nu—i—mv) du dv

i A A
1 my —nv nu+ mv 1
-5 > , J=3 X s
A (u,v)eD’() S A A (x,y)eD(a)
1
=g 2 JEw (15)
(x,y)eD(@)

where D(«) is determined uniquely by = m +in. In other words, for certaiwn, n), only
a finite number of point§2x (mp — ng)/(m? + n?), 2w (np + mq)/(m? + n?)} would be
inside the field [027] x [0, 2x], and p, g are integers. This finite point set is also called
the interpolation point set.

For the equation

S = Z Cap (16)
BeG*
we have the correspondingdius inversion formula as
Y ca=13 Y wB)Sup (17)
zeU BeG*

since the right-hand side of (17) is equal to

% Z M(;B)Saﬁ = Zji Z :U«(,B)anﬁy

BeG* BeG* 14
B'=By
= Zji Z Cap’ Z/J/(,B) = 4[%] Z Cpa
B'eG* BIB’ B'eU

=Cq + Cig + C_¢ + C_ig-
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Thus

WIECQ+Cia +C g+ Clig = Zji Z M('B) Z f(xs y) (18)

2
jec- 12B1° (. \\Dap)
Now, let us consider

[ee]

F,y) = fx+sm,y+1m)= Y cp,€netmintiml
m,n=—00

00
— Z Cm’nei(ms+nt)nei(mx+ny).

m,n=—00

From the periodicity off (x, y) andcgo = 0, it is also given that

2 2
/ f F(x,y)dxdy =0
o Jo

Again writing thate = m + ni, from equation (18) we have
Caei(mernt)n _’_Caiei(fnermt)n +c_aei(7m.v7m)n +C_0,iei(m7mt)n
w(p)
: Z B2 Z fx+sm,y+im). (19)
BeG* (x,y)eD(@p)
() Lets = %, ¢t = 3. Then
Wa = €% + cpi€ ™ + c_o €9 + c_,i€”

= CO{ — Cqi + C_g — Cqi
n(B) ( —m
Z 2 Z f 22yt e e (20)
4 5 0Bl% | 5 Bep) +n me+n
(i) Let s = '"22”, t = ‘””’” . Then
Wi =li[cy, — cai —C_ o+ c_a,]

n(B) m+n —m+n
mezmz f<x+2(m2+n2)n,y+2(m2+n2)n>. (21)

ﬁeG* )ED(af)
_ _ mh

(iii) Let s = 3", t = "5*. Then
W4 = i[ca + cai —Cq — 7Dt|]

Z“(ﬂ) 3 f<x+m_"n,y+m+”n>. 22)

4 S Bl s 2(m? + n?) 2(m? + n?)

From the above, we have

Cai — Cqi = 12(W2 — Ws). (23)
Finally, it is given that

o = 3[(W1+ Wp) —i(Wa + Wy)] (24)

oo = 3[(W1+ W) +i(Wa + Wa)] (25)

Cai = 3[(W1 = Wp) +i(W3 — Wa)] (26)

Coai = Z[(W1 = W2) — (W3 — Wa)]. 27)

In many casesf (x, y) is real, and all the¥,, W,, W3 and W, are real, hencé, = c_,.

From the above, we see that the multiplicative operations in this AFT are much less than
that in FFT, which is quite suitable for a parallel processing design. However, the sampling
distribution needs further improvement for practical application.
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Figure 1. A 2D hexagonal lattice. Her& is the point about which rotation occurs.

4. 2D hexagonal lattice problem and ring of Eisenstein’s integers

4.1. Mobius inverse formula on Eisenstein’s ring

The 2D hexagonal lattice such as a monolayer graphite is essentially a complex lattice as
shown in figure 1. Rotate it through 188round a reference poilt, then superimpose the

new pattern on the original one. Obviously, the final result is equivalent to a superposition of
two face-centred hexagonal lattices with lattice constardad+/3x respectively (figure 2),

and each of them can be represented as a ring of Eisenstein’s integers [1, 10], i.e.

E={a+bw|a,be Z} (28)
wherea, b are integers, and

w

(29)

Sincew? = w — 1, the product of two Eisenstein’s integers is itself an Eisenstein’s
integer. The idea of factorization, of units, and of association of elements go through as for
the Gaussian integers, except that the units are

U = {£1, tw, +v?} (30)

which represents all the roots @f = 1. Any non-zero Eisenstein’s integer is therefore
associated with five other distinct Eisenstein’s integers.

This also includes a multiplicative semigroup with unique factorization considering the
associative relations.
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Figure 2. Put the two pictures before and after rotation together. The final result is a
superposition of two face-centred hexagons.

Therefore, the cohesive energy of the hexagonal lattice is equal to

Ex)=3 Y 3[®(alx) + ®(3lalx)] (31)

acE*

wherea = a + bw represents an Eisenstein’s integer, alid is the set of non-zero
Eisenstein’s integers. Based on thélbils theorem on the Eisenstein’s ring, the solution
of (31) can be given immediately as

4
[0(0) + @(VAN] = 5 > w@E(lalv).

acE*

Therefore, as the previous section, it leads to

() =) (D" Y u@E(al3). (32)
n=0

acE*

This result is quite concise and easy for practical calculation. Tléild function on
the ring of Eisenstein’s integers is shown in table 2. Note that the rotation of the lattice
is equivalent to constructing a principal ideal in the theory of rings, which is similar to a
normalized subgroup in the group theory.

The pair potentials between distinct atoms can be obtained by solving the inverse
problems for a binary structure.
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Table 2. Eisenstein’s Mbius functions.

m n—> 0 1 2 3 4 5 6 7 8
1 1-1-1-1 1-1-1 1 -1
2 -1-1 1-1 1 1 1-1-1
3 0-1-12 0-1 0 0-1-1
4 0 1 1-1 0o-1 1 1 O
5 -1-1 1 0-1-1 1-1 1
6 0-1 1 0 1 1 0-1 1
7 1 1-1-1 1-1-1-1 0
8 0-1-1-1 0 1 1 0 O

4.2. Application to graphite monolayer

It is well known that graphite has a layer structure with very strong interactions in planes and
very weak interactions between planes. Now let us calculate the in-plane elastic constants
of monolayer graphite by using thedius inverse formula on the Eisenstein ring.

4.2.1. Calculation of pair potential The ab initio calculated total energy for a monolayer
graphite sheet using the FLAPW method has been completed [15]. Here, the Rose function

is taken to fit the total energy curve as
E(x) = —a(l+ a(x — xq))e @) (33)

where x is the lattice constant angy is the lattice constant at equilibrium state. The
parameters in (33) are listed in table 3.

Table 3. Parameters for fitting total energy of graphite monolayer.

a (eV/atom) «(A™D xo (A)
1 abinitio limited basis [15] 7.41 3.038 1.429
2 abinitio converged basis [15] 8.69 2.842 1.415
3 Experiment 7.39 [16] 3.029 [17] 1.421 [16]

The calculated C—C pair potential can be obtained using (32). If it is also fit in Rose

form as
¢(r) = —a(L+a(r —ro)e """ (34)

then the fitting parameters are as shown in table 4.

Table 4. The calculated C-C pair potential based on the Rose equation.

aeV) aA™ oA
1 3456 3095  1.594
2 3795 2900 @ 1.622
3 3422 3083 1589

Note that table 4 corresponds to table 3 associated with three sources of total energy
curves respectively.
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4.2.2. Calculated results of elastic constant§or convenience, we define
c
‘¢ (35)
wherec is lattice constant of bulk hcp crystal iraxes directiong;; and C;; are theijth
elastic constants and tlig-component of elastic modulus tensor respectively. Theoan
be expressed as

1 9%€

= 36
= Soaé 861 €;=0,¢;=0 ( )

e,-j =

wheresg is the equilibrium atom area in plane,
3V3 ,
4 0
and¢ is the deformation energy per atom in the monolayer.
The strains are given by the following transformations:

50 = (37)

X =x(1+e) y =y for e1q
¥ =x(1+e€)y =y(l+e) for e»
and
, X , Xe
YT re) Tt Ave
According to a similar method to that discussed before, the deformation efiergy;) can

be expressed as the sums of pair potential and then the elastic constants can be expressed
as

for €66-

1
M= (;{la@/(mlxo) + V3¢’ (v/3lalxo)}

3 f g{lal ¢ (latlxo) + Blerl?¢” (v/3lar|xo)} (38)

and

12 = epp = —m o;{|a|¢’<|a|xo) + V3|’ (V3| x0)}

> {lerl?¢" (lalxo) + 3lal?p” (v/3le|x0)} (39)
M acE
where¢’ and¢” are the first and the second derivativegofespectively. Thus, we have
1 1
e11=——E(xo) + —=E&"(x 40
11 6fs(o) zﬁ(O) (40)
and
Lo+t et (41)
€12 =€ = — ——= X — X0)-
12 = €66 673 0 673 0
The equilibrium condition of a lattice is
E'(xo0) =
therefore
1
e11 = 3e1p = 3egs = —=E" (x0). (42)

2V/3
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Table 5. The comparison of calculated and experimental elastic constants with uNitaf

e11 e12 €66
1 3159 1053 105.3
Calculated 2 3242 108.1 108.1

3 3132 1045 1045

Experiment [17] 378.6 945 —
Experiment [18] 355.1 60.3 147.4

The experimental values ef; are calculated from the relatiefy = 5C;;, in whichc = 6.7A
[16]. The calculated results are listed in table 5.

The calculated results are quite acceptable although many-body interactions have been
ignored [18].

5. Conclusion and discussion

From the above discussion, the inverse 2D lattice problem can be solved successfully based
on different kinds of Mbbius inversion theorems in the theory of rings. The solutions
presented in this work are not only concise for theoretical analysis, but also rapidly
convergent for practical calculations in physics. This provides a convenient bridge between
the electronic structure calculation and mechanical, thermal or chemical properties. Also, we
would like to mention some other interesting works on the applicationsalfité inversion
formulae to physical problems, such as théléis method based on partially ordered sets

for the cluster variation method in statistical physics [19], and tlidiMs inversion formula

for supersymmetry in quantum field theory [20].
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Appendix. Some notes on AFT

This appendix illustrates an improved practical implementation of the one-dimensional AFT,
which can also be generalized to the two-dimensional AFT. Suppose that a furfction
is defined on(—oo, co) with period 2r and zero direct component, that is

o0

fo) =Y @™ (A1)

n=—oo

where

1 2 .
o= L / e f)yde  with co= 0. (A2)
2 0
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Then we define

e 1¢ 2m
Sn - ;(cnk + C—nk) - ; Z (nn) . (A3)

=1

Therefore,
00 0o nk
_ o uk) 2mm
Cn+cn—;ﬂ(k)snk—k_zlnkr;lf< nk . (A4)
Similarly, from
) . .
fa+n =Y cemen (A5)
n=—00
we have
o) . . 1< 2m
Sn(y) = (anelnky + C—nkeimky) = Z ( . + y) (A6)
n n
k=1 m=1
and
. ) o0 (k) Lk 2mm
€™ e € =) pk)Su(y) =) &k) D f ( ot y) - (A
=1 = ™ . n
Let
o einkyl +c, efinkyl - W
SRR ’ (A8)
anem 2 4 Cfnke_m 2 =W,
then
W, e—in_vl
W- efinyz w. e—inyz - W e—in_v1
Cn = 2 = 1 2 (Ag)
A A
and
‘ g W,
@z Wy|  Waem — wyen
e, = 2l "2 ! (A10)
A A
where
A = ’Z’:ll 2::2;: — dnn=y2) _ gin(i=y2) (A11)

We can selecty;, y, such thaty; — y, # fn and A # 0. If f(x) is real, and
f(x)=>r[a, cosnx + b, sinnx], then

a, = ¢, +c_y and b, =i(c, —c_p). (A12)
Therefore
W, e—fnh B Wy ényl
Wy e ' Wy  @ny2
= A

Wy g iny1 _ gny
W, @ iny2a _ gnyz
N A
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Wi, — Sinny]_

_ Wy, — sinny2 . Wo sinnyl — Wy sinnyz (A13)
sinn(y1 — y2) sinn(y1 — y2)
Wy g iy Wy gn
Wy ez W, em

b, =i
A

W1 cosny;
Wy  cosny; _ Wiy cosny, — Wo coSny, (A14)

osinn(y1—y2) sinn(y1 — y2)
If only finitely many termsN are taken, or I< n < N, then we may have; = 0, and
y2 =7 /(N + 1). In this case, we have

o] 00 nk
ay=W1= ) u(k)Su(0) = Z’“’”Zf(z’””) (A15)
=1 o onkoa— nk
and
b = W2 Wli?rs(N+1) (AL6)
sin (%)
where

. ulk) & 2mmw T
WZZZ nk n;)f< nk +N+1>

k=1

=3 uhsy (Nz 1) . (A17)
k=1

In this way, the sampling distribution becomes more convenient for calculation than the
existing works, but there still exist practical problems for further study.
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